On Interior-Point Warmstarts for Linear and Combinatorial Optimization

نویسندگان

  • Alexander Engau
  • Miguel F. Anjos
  • Anthony Vannelli
چکیده

Despite the many advantages of interior-point algorithms over active-set methods for linear optimization, one of the remaining practical challenges is their current limitation to efficiently solve series of related problems by an effective warmstarting strategy. In its remedy, in this paper we present a new infeasible-interior-point approach to quickly re-optimize an initial problem instance after data perturbations, or a new linear programming relaxation after adding cutting planes for discrete or combinatorial problems. Based on the detailed complexity analysis of the underlying algorithm, we perform a comparative analysis to coldstart initialization schemes and present encouraging computational results with iteration savings around 50% on average for perturbations of the Netlib linear programs and successive LP relaxations of max-cut and the traveling-salesman problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

Interior Point and Semidefinite Approaches in Combinatorial Optimization

Conic programming, especially semidefinite programming (SDP), has been regarded as linear programming for the 21st century. This tremendous excitement was spurred in part by a variety of applications of SDP in integer programming (IP) and combinatorial optimization, and the development of efficient primal-dual interior-point methods (IPMs) and various first order approaches for the solution of ...

متن کامل

A full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity

In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...

متن کامل

Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization

We study the semideenite programming problem (SDP), i.e the optimization problem of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semideenite. First we review the classical cone duality as is specialized to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomi...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010